Unserer Data Science Kurse: Lernen Sie Data Mininig und den Umgang mit Big Data
Die Data Science Kurse in Frankfurt vermitteln Ihnen das Wissen für Datenanalyse. Mit Hilfe von Data Mining Techniken lernen Sie datenbasierte Entscheidungen zu treffen
Daten sind das Öl des 21. Jahrhunderts
Daten sind die Bausteine des 21. Jahrhunderts: für moderne Unternehmen bergen das größte Potenzial für Gewinne und Optimierungen, wenn sie richtig analysiert und verarbeitet werden. Dafür ist meistens die Unterstützung von Data Science-Experten, sogenannten Datenwissenschaften, notwendig. Ein Umstand, den viele Unternehmen aktuell noch unterschätzen.
Was ist Data Science?
Data Science Kurse im Detail
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Weiterbildung in Data Mining in Frankfurt
Data Science Schulung im Herzen von Frankfurt
Individuelle In-House Data Science Schulung in Frankfurt
Data Science Kurse im Detail
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren
Weitere Schulungsorte
Das sagen bisherige Teilnehmer
Weitere Seminare und Termine
Die nächsten Kurse
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
Weitere Schulungsorte
Der Beruf des Data Scientist
Der Data Scientist verfügt über ein breites Spektrum an Fähigkeiten und kann mit allen Tools des Data Minung umgehen. Der Umgang mit Datenbanken, die Analyse und Bereinigung von Daten und deren graphische Darstellung, sowie die Anwendung von Algorithmen brauchen alle Datenwissenschaftler, wobei je nach Tätigkeitsfeld andere Schwerpunkte gefragt sind. Zu diesen Schwerpunkten zählt das sogenannte domain knowledge, fachbezogenes Spezialwissen für die Felder, auf denen die Data Analytics angewendet werden. Neben der Analyse und der Verarbeitung von Daten zäglen auch ihre publikumsfreundliche Präsentation und Vorstellung von Lösungen zu den Aufgaben des Datenwissenschaftlers.
Er oder sie unterstützt den Prozess der Entscheidungsfindung, indem er/sie aus Daten Muster und Informationen erarbeitet. Heutzutage sind diese die Grundlage von Fortschritt. Dabei gibt es verschiedene Möglichkeiten, Muster zu erkennen: mit rein deskriptive Analysen oder von Algorithmen im Machine Learning unterstützt. Letztere sind in der Lage, selbst zu lernen und auf eigene Faust, Muster zu identifizieren und Vorhersagen zu treffen: Wie lange wird ein Bauteil noch funktionieren? Ist es an der Zeit, es auszuwechseln? Die erarbeiteten Erkenntnisse dienen als Grundlage für Handlungsempfehlungen, die mit dem Fachbereich oder dem Management diskutiert und optimiert werden.
Data Scientist sind dabei in allen Branchen gerne gefragt: das Feld des Data Mining entwickelt sich schneller weiter als neue Fachkräfte ausgebildet werden können. Zudem wachsen die Datenvorräte moderner Unternehmen im digitalen Zeitalter mit schwindelerregendem Tempo, besonders im Gesundheitswesen, der Logistik, dem Marketing, bei Banken und Versicherungen.
Aufgrund des Mangels auf dem Arbeitsmarkt, erwartet gut ausgebildete Datenwissenschaftler ein überdurchschnittlich hohes Gehalt. Ein Jahresgehalt von 55.000 Euro ist durchaus üblich, kann aber aufgrund verschiedener Faktoren schwanken: Berufserfahrung, Branche oder Stanort.
Data Science: Ein Werkzeugkasten
Übersicht unserer Kurse
Kurs: Data Science in R (Grundlagen von R für Data Analytics)
Kurs: Data Science Intensivseminar
Kurs: Data Science in Python
Topgründe, um an einer Data Science Schulung in Frankfurt teilzunehmen
Grundlage für eine erfolgreiche Karriere
Die Nachfrage ist höher als das Angebot: Data Scientist haben deshalb mehr Karrieremöglichkeiten. Eine Schulung von Enable AI ist die perfekte Grundlage für eine erfolgreiche Laufbahn im Feld der Data Science und Data Analytics.
Bleiben Sie up-to-date
Die Datenwissenschaften befinden sich im ständigen Wandel. Fast täglich gibt es neue Technologien und bestehende werden ununterbrochen weiter entwickelt. Sobald Sie Ihre ersten Schritte als Data Scientist gemach haben, werden Sie merken, dass man nie auslernen kann: Algorithmen lernen exponentiell und gerade als Experte müssen Sie Schritt halten.
Lernen Sie verschiedene Software-Anwendungen kennen
Jeder Schritt bring Sie weiter. Sobald Sie erst einmal Erfahrungen mit bestehenden Anwendungen gesammelt haben, werden Sie auch mit neuen Anwendungen schnelle Fortschritte machen. Ehe Sie sich versehen, haben Sie schon ein ganz eigenes Gefühl für die Stärken der einzelnen Programme und ihrer Funktionen entwickeln.
Professionelle Schulungen
Wir garantieren Ihnen erstklassig ausgebildete Trainer, die durch Promotion und jahrelange Berufserfahrung sowohl in der Theorie als auch in der Praxis in den Tools und Techniken der Data Analytics sattelfest sind. Ein gut durchdachtes und praxiserprobtes Schulungskonzept versprechen eine umfassende Lehrerfahrung.
Fähigkeiten zur Problemlösung
So wie die Tools aus einem Werkzeugkasten für jede Baustelle geeignet sind, sind auch die Inhalte der Enable AI-Kurse als Tools für eine Vielzahl von Problemstellungen gedacht. Flexibilität bei der Problemlösung ist eine der wichtigsten Fähigkeiten auf dem Arbeitsmarkt des 21. Jahrunderts, die sich mit jedem neuen Impuls, zum Beispiel durch eines unserer Seminare, verbessern wird.
Aufstiegschancen
Die Ausbildung in der Datenwissenschaft öffnet Ihnen die Tür zu den besten IT-Firmen, die sich um Sie reißen werden. angeworben zu werden. Eine datenwissenschaftliche Ausbildung eines renommierten Anbieters wie Enable AI ist die optimale Anlaufstelle für einen großen Sprung auf der Karriereleiter.
Vorbereitung auf die Praxis
Ohne praktische Anwendung ist die beste Theorie jedoch nutzlos. Als Kursanbieter legt Enable AI deshalb großen Wert darauf, für die Schulung die Inahlte aufzuarbeiten, die letztendlich auch im Alltag der Industrie relevant ist. Auf diesen Alltag wollen wir Sie vorbereiten, deshalb umfasst ein Data Science Seminar viele Übungen, bei denen Sie selbst aktiv werden.