R Programmieren lernen - Tidyverse Training

R Kurs mit Programmierung Einführung, Tidyverse zur Datenaufbereitung und RStudio

(*) zzgl. MwSt    (**) inkl. MwSt
Termin (3 Tage)
Ort
Belegung
Preise

19.04.21 –
21.04.21

Live-Online
Zoom Meeting
1.050,00  (*)
1.249,50 € (**)

02.08.21 –
04.08.21

Köln
Regus Schulungszentrum
1.050,00  (*)
1.249,50 € (**)

24.11.21 –
26.11.21

München
Landsberger Straße 155
1.050,00  (*)
1.249,50 € (**)
Kundenbewertungen & Erfahrungen zu Enable AI. Mehr Infos anzeigen.

Der R Kurs auf einen Blick

Über die R Schulung

Über die R Schulung

Der R Kurs auf einen Blick

Bildungsschecks

Bildungsscheck Nordrhein Westfalen
Bildungsprämie
Wir akzeptieren den Bildungsscheck NRW und die Bildungsprämie.
Bildschirm mit möglichen Grafiken aus dem Kurs Einführung in die Statistik mit R.

Die dreitägige Statistik Schulung bietet eine R Einführung und erläutert Aspekte in Statistik und deren Umsetzung in R. Zudem wird die Datenstruktur data.table erläutert, um wichtige Grundlagen in der Datenanalyse umsetzen zu können.

Die frei verfügbare Programmiersprache R hat sich zu einer der meistverwendeten Sprachen bei statistischen Fragestellungen und Datenanalysen in Wissenschaft und Wirtschaft entwickelt. R wird in vielen Industrien verwendet, vor allem in der Versicherungsbranche, im Finanzsektor und in der medizinischen Statistik. Die Anwender schätzen die Leistungsstärke bei statistischen Berechnungen, die Einfachheit beim Erzeugen hochwertiger Grafiken sowie die umfangreichen Funktionen und Verfahren für Statistik und Datenanalyse. Auch im Machine Learning bietet R durch seine Fülle an Algorithmen und leichte Bedienbarkeit einen großen Vorteil. Schätzungsweise mehr als zwei Millionen Anwender benutzen R weltweit.

Der Schwerpunkt der Schulung liegt auf der anschaulichen Erklärung der Statistik Grundlagen, wobei nur das Notwendige an mathematischen Formeln verwendet wird. Der Fokus liegt auf der direkten Umsetzung mit R und dem eigenen Programmieren.

Am Ende des Statistik Seminars haben Sie einen Überblick über wichtige Grundlagen in Statistik, kennen das Paket data.table und können selbstständig erste Daten analysieren und Statistiken berechnen.

Sie erhalten einen Überblick über R mit der Entwicklungsumgebung (IDE) RStudio und lernen die Grundlagen zur Benutzung kennen, z.B. Variablen zuweisen, Pakete installieren und laden. Sie kennen wichtige Datentypen in R (vector, factor array) und nach der Statistik Einführung können Sie schnell grundlegende deskriptive Statistiken der Daten berechnen. Wichtige Lagemaße (Mittelwert, Median, Quantile) und Streuungsmaße (Varianz, Standard Abweichung) der Statistik und die Umsetzung in R sind Ihnen bekannt. Desweiteren werden Häufigkeitstabellen und Kreuztabellen und bedingte Wahrscheinlichkeiten behandelt.

Nach diesem Statistik Kurs kennen Sie bekannte Verteilungen, wissen was Dichtefunktion und Verteilungsfunktion ist und können Zufallszahlen aus einer Verteilung ziehen.

Für die Grundlagen der Datenanalyse wird das Paket data.table verwendet. Es ist neben dem tidyverse-Paketen (u.a. mit dplyr) das beliebteste Paket zur Analyse von Daten. Sie können Daten einlesen und schreiben, Statistiken auf den Daten berechnen und fehlende Daten ergänzen. Data.table ist im Vergleich zu tidyverse insbesondere für größere Datenmengen effizienter. Die data.tables entsprechen den häufig in der statistischen Programmiersprache R verwendeten data.frames und ermöglichen eine elegante Analyse der Daten. In diesem Kurs wird nicht dplyr bzw. tidyverse geschult.

In der deskriptiven, bivariaten Statistik werden Korrelationsanalysen durchgeführt und die bekannten Korrelationsmaße Korrelationskoeffizient nach Pearson und Rangkorrelation nach Spearman behandelt.

Das beliebteste Paket zur Erstellung von Grafiken, ggplot2, und die dahinterliegende grammar of graphics wird durchgenommen. Sie können eigene Visualisierungen erstellen, anpassen, abspeichern und kennen die Grundlagen, um Plots individuell anzupassen. Sie beherrschen die Grundlagen von statistischen Tests (Stichprobe, Nullhypothese, Signifikanz, Konfidenzintervall) und können Mittelwertsvergleiche mit dem t-Test durchführen. Häufige Pre-Tests für die Überprüfung der Voraussetzungen vom t-Test und nicht-parametrische Tests sind Ihnen geläufig.

Diese Statistik Weiterbildung beinhaltet auch ein einfaches Verfahren des Machine Learnings, welches ein Standardverfahren der Statistik ist: die lineare Regression. Sie lernen die theoretischen Grundlagen kennen, können den Algorithmus in R umsetzen und die Ergebnisse interpretieren.

Die Einstiegshürde für die Benutzung von R für Statistik und Datenanalyse ist genommen, so dass Sie eigenständig Ihr Wissen nach dem R und Statistik Intensivkurs erweitern können. Durch die kleine Gruppengrößen und die eigene Umsetzung auf Ihrem Laptop mit Unterstützung des Dozenten wird eine hohe Qualität und ein bestmöglicher Lernerfolg sichergestellt.

10:00 – 10:15
Begrüßung und Organisatorisches
  • Vorstellungsrunde
  • Erwartungen der Teilnehmer
10:15 – 11:45
Grundlagen in R
Einführung in R
  • Überblick über R und R-Studio
  • Bedienung von R und R-Studio (Editor, Konsole, Hilfe usw.)
  • Pakete installieren und laden
  • Zuweisung von Variablen
  • Skripte schreiben und ausführen
11:45 – 12:00
Kaffeepause
12:00 – 13:30
Datenstruktur
Wichtigste Datenstrukturen
  • Vector, Factor und Array in R
  • Elemente extrahieren
  • Überblick über die Daten erhalten mit einfachen Funktionen
  • Daten in andere Datenstrukturen umwandeln
13:30 – 14:30
Mittagspause
14:30 – 16:00
statistik in R
Statistiken in R
  • Lagemaße (Mittelwert, Median, Quantile)
  • Streuungsmaße (Varianz, Standard Abweichung)
  • Weitere mathematische Funktionen (Minimum, Maximum, Summe, Wurzel, …)
16:00 – 16:15
Kaffeepause
16:15 – 18:00
Kreuztabelle R
Kreuztabelle & bedingte Wahrscheinlichkeiten
  • Eine Häufigkeitstabelle berechnen
  • Auswertung einer Kreuztabelle
  • Zeilen- und Spaltenwahrscheinlichkeiten berechnen
  • Bedingte Wahrscheinlichkeiten interpretieren
09:00 – 09:15
Rückblick und offene Fragen von Tag 1
09:15 – 10:45
statistische Verteilung in R
Statistische Verteilungen und Zufallszahlen
  • Dichtefunktion und Verteilungsfunktion
  • Bekannte statistische Verteilungen
  • Zufallszahlen aus einer Verteilung ziehen
  • Tests, ob Daten einer Normalverteilung folgen
10:45 – 11:00
Kaffeepause
11:00 – 12:30
data table in R
Grundlagen eines DataTables
  • Effiziente Berechnung mit Daten
  • Reihen und Spalten filtern / auswählen
  • Statistiken auf Spalten berechnen
  • Berechnungen nach einer Variablen gruppieren
 
13:30 – 14:30
Mittagspause
12:00 – 13:30
Datenmanipulation mit data table in R
Weitere Datenanalysen
  • Spalten anlegen / modifizieren / löschen
  • Fehlende Werte ergänzen
  • Daten einlesen (mit der Funktion fread) und schreiben (als .csv bzw. .RData)
16:00 – 16:15
Kaffeepause
16:15 – 18:00
Korrelation
Bivariate Deskriptivstatistik
  • Korrelationsanalysen
  • Streudiagramme
  • Bekannte Korrelationsmaße: Korrelationskoeffizient nach Pearson, Rangkorrelation nach Spearman
 
09:00 – 09:15
Rückblick und offene Fragen von Tag 2
09:15 – 10:45
Beispiel von ggplot2
Datenvisualisierung mit ggplot2
  • Das Konzept hinter Grammar of Graphics
  • Die Layer von ggplot2 zur Erstellung erster Plots und zum Plotten von Statistiken
  • Darstellungen (Größe der Datenpunkte, Farbe, Gruppierung) mit einer Variable variieren oder festsetzen
  • Mehrere Subplots erstellen, Plots anpassen und speichern
  • Kerndichteschätzer
  • Wichtige Plots: Scatterplot, Histogramm, Boxplot
11:45 – 12:00
Kaffeepause
12:00 – 13:30
t test
Statistische Tests
  • Grundlagen von statistischen Tests (Stichprobe, Nullhypothese, Signifikanz, Konfidenzintervall)
  • Mittelwertsvergleiche und t-Tests
  • Pre-Tests für die Überprüfung der Voraussetzungen vom t-Test. (Anderson-Darling, Shapiro-Wilk, Levene-Test)
  • Nicht-parametrische Tests: U-Test und Vorzeichenrangtest bei Medianen
13:30 – 14:30
Mittagspause
12:00 – 13:30
Lineare Regression in R
Lineare Regression in R
  • Algorithmische Grundlagen
  • Umsetzung in R
  • Interpretation und Signifikanz der Koeffizienten
  • Bewertung der Gütemaße: R2, AIC/BIC
  • Überprüfung der Normalverteilung der Residuen
16:00 – 16:15
Kaffeepause
16:15 – 18:00
Wiederholung
Wiederholung mit eigenen oder neuen Daten
  • Möglichkeit, das Gelernte am mitgebrachten Datensatz anzuwenden und direkt Fragen zu klären.
  • Alternativ: Wiederholung am neuen Datensatz, um das Wissen zu vertiefen.

Zielgruppe der R Programmierung Einführung

Dieser Kurs mit R richtet sich an Teilnehmer, welche Statistik Grundlagen lernen möchten und keine oder geringe Erfahrung in Statistik, der Analyse von Daten und der Bedienung der Statistik-Software R mit RStudio haben. Ziel ist eine Einführung in Statistik und die Umsetzung in R. Teilnehmer haben in Ihrem Unternehmen mit der statistischen Auswertung von Daten zu tun oder wollen sich in diese Richtung entwickeln.

Voraussetzungen für den R Kurs mit Tidyverse Training

Diese R Einführung setzt keine Kenntnisse in R oder einer anderen Programmiersprache voraus. Notwendig sind jedoch Vorerfahrung mit dem Umgang von Daten. Teilnehmer haben bereits in Excel oder einer BI-Software gearbeitet und verstehen bspw. das Konzept einer spaltenweisen Berechnung bzw. einfache Statistiken (Mittelwert, Varianz).
Allgemeine Computerkenntnisse und mathematische Grundkenntnisse (Was ist eine Funktion, Summenzeichen, Integral, Ableitung, Grundrechenarten, Koordinatensystem zum Plotten, …) werden vorausgesetzt.
Verwendete Fachbegriffe in R und die Dokumentation im Internet sind auf Englisch. Daher sind die Folien in dieser Schulung auf Englisch. Die Sprache im Kurs ist Deutsch.

Didaktischer Aufbau der R Schulung

Diese Schulung erklärt die Grundlagen von Statistik und der Programmierung mit R. Die Praxis steht im Vordergrund. Teilnehmer programmieren eigenständig in der Entwicklungsumgebung RStudio, um direkt zu üben. Somit können Fragen direkt vom Trainer beantwortet werden und Unklarheiten können besprochen werden. Der Trainer unterstützt bei der Lösung der Übungen.

Technik im R Seminar

  • Die Teilnehmer benötigen für die Übungsaufgaben Laptops. Wir empfehlen, Ihren eigenen Laptop mit der vorab installierten Software mitzubringen. Eine genaue Installationsanleitung für die Software wird Ihnen vor dem Seminar per E-mail zugesandt. Auf Anfrage stellen wir auch Schulungslaptops zur Verfügung.
  • Bitte prüfen Sie, ob Ihr Firmenlaptop Zugangsbeschränkungen im Internet hat. Die digitalen Unterlagen (Skript, Code, Dateien) werden im Seminar online zum Download zur Verfügung gestellt. Sie erhalten vor dem Seminar per E-Mail den Link zu einer Testdatei zum Download, um dies überprüfen zu können.
  • Sie sollten sich in firmenfremde WLAN-Netze registrieren können.
  • Als Backup Lösung ist es möglich, dass der USB Port bei Ihrem Laptop freigeschalten ist, um damit verwendete Dateien oder sonstige Unterlagen übertragen zu können.
  • Im Seminar wird das Betriebssystem Windows verwendet. Der Umgang mit Ihrem verwendeten Betriebssystem und Laptop sollte bekannt sein. Insbesondere sollten Sie ohne Schwierigkeiten Sonderzeichen auf der Tastatur finden (insbesondere bei Apple Geräten werden auf manchen Tastaturen nicht immer runde, eckige bzw. geschweifte Klammern dargestellt).

Für das Seminar ist folgendes Buch als Ergänzung hilfreich: Andrie de Vries: R für Dummies. Grundsätzlich wird alles Wissen und Codebeispiele im Kurs so erklärt, dass es nicht nötig ist vor dem Kurs ein Buch zu lesen. Sie sollten lediglich darauf achten, dass Sie die Voraussetzungen (siehe Reiter Organisatorisches –> Voraussetzungen) erfüllen.

Wir bieten den Kurs in folgender Stadt an: Stuttgart. Falls Sie die Schulung gerne in einer anderen Stadt oder direkt bei Ihnen im Unternehmen besuchen möchten, kontaktieren Sie uns gerne.

Definitiv. Sie werden sich im Kurs wohlfühlen. Die erste von vier Lektionen am ersten Tag schafft die Grundlagen und sie können den Editor gleich selbst ausprobieren. Ab der zweiten Lektion ist mindestens die Hälfte der Zeit zum selbstständigen Üben, so dass Sie das Besprochene direkt coden können und selbst erkennen, wo noch Fragen bestehen, die Sie mit dem Dozenten direkt besprechen können.

Im Seminar enthält jeder Block (meist über etwa 90 Minuten) eine oder mehrere Theorie- und Praxiseinheiten. Die Theorieeinheit dient dazu, Ihnen das nötige Wissen zu vermitteln, um die Übungsaufgaben zu verstehen und selbstständig lösen zu können. Wir verzichten auf langatmige, wissenschaftliche Theorieeinheiten und konzentrieren uns auf den theoretischen Stoff der zu einem besseren Verständnis beiträgt. Der Fokus liegt auf der Praxis, d.h. dem Codeschreiben und Lösen von kleinen Verständnisaufgaben zum Lernstoff. Fragen von Teilnehmern sind jederzeit möglich. Während der Praxiseinheit werden die Fragen individuell vom Dozenten beantwortet. Fragen von allgemeinem Interesse werden allen Teilnehmern erklärt. Die Folien, welche die Theorie und weitere Erklärungen vom Code enthalten erhalten Sie als pdf und in gedruckter Version. Codebeispiele und die Musterlösung der Übungsaufgaben liegen digital vor.

Die Übungen bestehen hauptsächlich aus Coding Aufgaben, d.h. Sie schreiben entweder kurze Codebeispiele oder Sie werden gefragt, Codelücken in einem bestehenden Code zu ergänzen. Letzteres schult auch das Codeverstehen. Die Aufgaben sind so gewählt, dass die wichtigen Aufgaben von allen Teilnehmern in der verfügbaren Zeit gelöst werden können. Wir haben Coding Aufgaben unterschiedlichen Schwierigkeitsgrades vorbereitet, so dass schnellere Teilnehmer oder Teilnehmer mit Vorwissen zusätzlich an weiteren Aufgaben üben können. Desweiteren gibt es für manche Kapitel kurze Kontrollfragen zum Theorieteil.

Über die R Schulung

Der R Kurs auf einen Blick

Bildungsschecks

Bildungsscheck Nordrhein Westfalen
Bildungsprämie
Wir akzeptieren den Bildungsscheck NRW und die Bildungsprämie.

Warum bei Enable AI buchen

Leistungen im Kurs

Durchführungsgarantie

Die Trainer, die in exklusiver Kooperation mit Enable AI zusammen arbeiten, kommen alle aus der Praxis und vermitteln praxisnahes, aktuelles Wissen auf leicht verständliche Art und Weise mit dem Ziel, dass Sie in Ihrer Arbeit das Wissen direkt anwenden können.

Zufriedenheitsgarantie

Sollten Sie in einem mehrtägigen Seminar bis zum Ende des ersten Seminartags merken, dass dieses Seminar nicht Ihren Erwartungen entspricht, sprechen Sie bitte mit dem Kursleiter am ersten Seminartag und es wird Ihnen die volle Kursgebühr inkl. Anreise (30 cent / km bzw. Bahnfahrt 2. Klasse) erstattet. Ohne Wenn und Aber.

Wissensgarantie

Falls Ihr(e) MitarbeiterIn unerwarteterweise innerhalb eines halben Jahres nach dem Besuchen eines Kurses für mehr als 6 Monate (Krankheit, Elternzeit, Sabbatical,...) ihr Unternehmen verlässt, darf kostenlos ein Kollege innerhalb eines Jahres ab dem Verlassen des Kollegens ein stattfindendes Seminar mit demselben Inhalt besuchen.

Hands-on Schulungen

Die Kurse sind hands-on Trainings, mit vielen Coding Übungen (inkl. digitalen Musterlösungen). Denn durch praktische Beispiele lernt man am meisten.

Individuelle Schulungen

Wenn es im Interessen der Schulungsgruppe ist, ändert der Trainer das Seminar nach Ihren Wünschen ab bzw. integriert Ihre Daten nach Rücksprache in den Kurs.

Aktualisierte Schulungen

Sollten Sie eine Schulung zweimal besuchen, wird diese nicht identisch sein. Ihr Feedback wird berücksichtigt und die Schulungen werden an die aktuelle Themen in Forschung und Entwicklung angepasst.

Trainer aus der Praxis

Die Trainer, die in exklusiver Kooperation mit Enable AI zusammen arbeiten, kommen alle aus der Praxis und vermitteln praxisnahes, aktuelles Wissen auf leicht verständliche Art und Weise mit dem Ziel, dass Sie in Ihrer Arbeit das Wissen direkt anwenden können.

Kleine Gruppen

Garantierte maximale Gruppengröße von 10 Teilnehmern. Im Durchschnitt besuchen 6 Teilnehmer einen Kurs.

Fundiertes Wissen

Vor der Zusammenarbeit werden unsere Trainer geprüft. Alle besitzen fundierte Kenntnisse, u.a. durch Studium, Promotion und Berufserfahrung in den Bereichen Mathematik, Informatik, Statistik und Machine/Deep Learning.

Thematisch ähnliche
Python oder R Seminare

Auswahl ähnlicher Kurse wie dieser Kurs über die Grundlagen vom R Programmieren

Weitere Seminare und Termine

Die nächsten Kurse

Übersicht über die kommenden Schulungen in Machine Learning, Deep Learning, Data Science und Statistik.

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

(3 Tage) In dieser Schulung lernen Sie, wie Sie Webapps bauen können um die Ergebnisse Ihrer Data Science / Deep Learning Algorithmen visualisieren zu können und Ihren Kollegen über ein Web Oberfläche zur Verfügung zu stellen. Verwendete Pakete und Programmiersprachen sind Python, Flask, Html / CSS, streamlit, jinja, ajax.

(2 Tage) In dieser Schulung lernen Sie, wie Sie schnell und effektiv Ihre Daten und Ergebnisse mit Python visualisieren und mit anderen teilen können. Auch die interaktive Visualisierung wird behandelt. Verwendete Python Pakete sind: pandas, matplotlib, plotly, rise, ipywidgets, voila, streamlit.

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

In dieser Schulung lernen Sie, wie Sie Geo-Spatial-Daten in Python analysieren und visualisieren können. Das Seminar behandelt raumbezogene Vektordaten (mit dem Python Paket geopandas) und Rasterdaten (mit dem Paket Rasterio). Das Python Modul Contextily wird verwendet um fortgeschrittene Visualisierungen zu realisieren.

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

(2 Tage) In dieser Schulung lernen Sie, wie Sie schnell und effektiv Ihre Daten und Ergebnisse mit Python visualisieren und mit anderen teilen können. Auch die interaktive Visualisierung wird behandelt. Verwendete Python Pakete sind: pandas, matplotlib, plotly, rise, ipywidgets, voila, streamlit.

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

In dieser Schulung lernen Sie, wie Sie Zeitreihen Daten in Python analysieren und visualisieren können. Neben klassischen Methoden zur Zeitreihenvorhersage (ARMA) werden auch Maschinelle Lernen Methoden behandelt (RNN, LSTM). Verwendete Python Module sind: pandas, matplotlib, plotly, datetime, statsmodels, sklearn, keras.

In dieser Schulung lernen Sie, wie Sie Geo-Spatial-Daten in Python analysieren und visualisieren können. Das Seminar behandelt raumbezogene Vektordaten (mit dem Python Paket geopandas) und Rasterdaten (mit dem Paket Rasterio). Das Python Modul Contextily wird verwendet um fortgeschrittene Visualisierungen zu realisieren.

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

(3 Tage) In dieser Schulung lernen Sie, wie Sie Webapps bauen können um die Ergebnisse Ihrer Data Science / Deep Learning Algorithmen visualisieren zu können und Ihren Kollegen über ein Web Oberfläche zur Verfügung zu stellen. Verwendete Pakete und Programmiersprachen sind Python, Flask, Html / CSS, streamlit, jinja, ajax.

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).