Deep Learning, Neuronale Netze mit Python

Schulung der Grundlagen von Künstlicher Intelligenz (KI) mit Keras-Tensorflow

(*) zzgl. MwSt  (**) inkl. MwSt
Termin (3 Tage) Ort Belegung Preise
19.09, 21.09,
Fr 23.09.22
Live-Online
Zoom Meeting
1.525,00  (*)
1.814,75  (**)
07.11, 09.11,
Fr 11.11.22
Live-Online
Zoom Meeting
1.525,00  (*)
1.814,75  (**)
Inhouse-/Firmenschulung:
Kundenbewertungen & Erfahrungen zu Enable AI. Mehr Infos anzeigen.

Kurs auf einen Blick

Über die Schulung

  • Dauer: 3 Tage
  • Gruppengröße: 3-10
  • Level: Anfänger mit Programmiererfahrung
  • Anteil Coding: 60%
  • Sprache: Python
  • Bibliotheken: Keras, Tensorflow, matplotlib, numpy
  • Skript: .pdf (Theorie, Aufgaben & Lösungen)

Ihr Trainer für den Kurs

Seminar auf einen Blick

  • Multi-Layer-Perceptron (MLP)
  • Convolutional Neural Network (CNN)
  • Wichtige Layer: ReLU, Dense, Conv2D, Max-Pooling,..
  • Trainingsüberwachung mit Keras Callbacks
  • Overfitting & Trainings-, Test- und Validierungdaten
  • Bildklassifizierung, Text- und Sequenzdaten (LSTM)
  • Recurrent Neural Network (RNN)
  • Netzwerke mit wenig Daten trainieren
  • Vortrainierte Netzwerke verwenden (Fine-Tuning)
  • Schulung mit GPUs + GPU Setup danach nutzbar

Beschreibung des Künstliche Intelligenz Seminar

Unser Kurs Deep Learning mit GPU Benutzung (jeder Teilnehmer rechnet auf einer eigenen high-performance GPU (NVIDIA Tesla P100) in der Cloud) bietet eine Einführung in Deep Learning (DL) Algorithmen mit den grundlegenden Verfahren für Bild-, Text- und numerischen Daten. Deep Learning Algorithmen sind derzeit eine der wichtigsten Algorithmusklasse des Maschinellen Lernens, einem Teilgebiet der Künstlichen Intelligenz (KI) und sind bereits in vielen Bereichen in unserem Alltag integriert. In der Schulung wird das Anlernen geeigneter Modelle behandelt, um diese für die Klassifikation oder Schätzung auf neue Daten zu verwenden.

Sie lernen Schritt für Schritt die wichtigsten Aspekte, um in Tensorflow / Keras Deep Learning Algorithmen programmieren zu können. Es wird die Datenaufbereitung und das sequentielle Einlesen von großen Datenmengen im Training behandelt, die Erstellung tiefer neuronaler Netze, die möglichen Konfigurationen für das Training und die Anwendung der trainierten Modelle auf neue Daten.

Im Seminar werden gängige Varianten von Deep Neural Networks und deren Bestandteile besprochen. Die Inhalte werden mit Folien und Flipchart erklärt und in Übungen umgesetzt und vertieft.

Häufige Anwendungsfelder im Deep Learning werden behandelt: Vorhersage bei numerischen Daten, Klassifikation von Bildern und Klassifikation/Vorhersage bei Text bzw. Sequenzdaten.

In der Industrie werden die behandelten Algorithmen u.a. in folgenden Bereichen eingesetzt:

  • Erkennen von Symbolen (z.B. Zahlen und Buchstaben)
  • Produktionsüberwachung (das visuelle Erkennen von Fehlern/Verschleiß bei Bauteilen)
  • Textur-/Oberflächenanalyse,
  • Das automatische Tagging von Bildern, z.B. zur Ermöglichung einer textuellen Bildsuche
  • Sprachliche Übersetzung von Texten
  • Sentiment-Analyse von Texten
  • Vorhersage bei Zeitreihendaten

Unser Kurs Deep Learning bietet eine Einführung in Deep Learning (DL) Algorithmen mit den grundlegenden Verfahren für Bild-, Text- und numerischen Daten. In der Schulung wird das Anlernen geeigneter Modelle behandelt, um diese für die Klassifikation oder Schätzung auf neue Daten zu verwenden.

Sie lernen

  • die wichtigsten Aspekte, um in Tensorflow / Keras Deep Learning Algorithmen programmieren zu können.
  • die Datenaufbereitung und das sequentielle Einlesen von großen Datenmengen im Training
  • die Erstellung tiefer neuronaler Netze und die Anwendung der trainierten Modelle auf neue Daten.
  • gängige Varianten von Deep Neural Networks und deren Bestandteile besprochen.

Die Inhalte werden mit Folien und Flipchart erklärt und in Übungen umgesetzt und vertieft.

Häufige Anwendungsfelder im Deep Learning werden behandelt:

  • Vorhersage bei numerischen Daten,
  • Klassifikation von Bildern,
  • Klassifikation/Vorhersage bei Text bzw. Sequenzdaten.

In der Industrie werden die behandelten Algorithmen u.a. in folgenden Bereichen eingesetzt:

  • Erkennen von Symbolen (z.B. Zahlen und Buchstaben)
  • Produktionsüberwachung (das visuelle Erkennen von Fehlern/Verschleiß bei Bauteilen)
  • Textur-/Oberflächenanalyse,
  • Das automatische Tagging von Bildern, z.B. zur Ermöglichung einer textuellen Bildsuche
  • Sprachliche Übersetzung von Texten
  • Sentiment-Analyse von Texten
  • Vorhersage bei Zeitreihendaten

Was lernen Sie in diesem Deep Learning Seminar?

Es werden die am häufigsten verwendeten Künstlichen Neuronalen Netze theoretisch behandelt und deren Bestandteile besprochen (u.a. Multi Layer Perceptron (MLP), Convolutional Neural Network (CNN) zur Verarbeitung von Bilddaten und das Recurrent Neural Network (RNN) bei Text- und Zeitreihendaten) und in praktischen Übungen in Python mit den Framework Keras / Tensorflow mit high-performance GPUs umgesetzt. Sie lernen in diesem Tensorflow Workshop schrittweise die wichtigsten Aspekte für die Umsetzung mit der Deep-Learning Bibliothek Keras. Es wird die Datenaufbereitung und das sequentielle Einlesen von großen Datenmengen im Training behandelt, die Erstellung von Netzen, die möglichen Konfigurationen für das Training und die Anwendung der trainierten Modelle auf neuen Daten.

Python ist im Deep Learning die am häufigsten verwendete Sprache und Keras/ Tensorflow ist eine der beliebtesten Bibliotheken zur einfachen Umsetzung von Deep Learning Algorithmen.

Wir behandeln die Anwendungsfälle Vorhersage bei numerischen Daten, Klassifikation von Bildern und Klassifikation/Vorhersage bei Text bzw. Sequenzdaten. Dabei werden wir die Leistungsfähigkeit der Algorithmen kennenlernen und typische Probleme während des Trainings und deren Lösungsmöglichkeiten (u.a. Regularisierung während des Trainings) behandeln.

Einfache Neuronale Netze mit verschiedenen Schichten (Layern) werden von den Teilnehmern in dieser Tensorflow Schulung entworfen und mit dem Framework Keras/ Tensorflow in der Programmiersprache Python in der Cloud mit Jupyter Notebooks umgesetzt und trainiert.

Es werden die Grundlagen vermittelt, so dass Sie nach dem Seminar Deep Learning Algorithmen der Künstlichen Intelligenz programmieren können, sich selbstständig weitere Anwendungsfälle im Deep Learning aneignen und das Gelernte auf eigene Problemstellungen anwenden können.

In diesem Deep Learning Kurs lernen Sie:

  • die am häufigsten verwendeten Künstlichen Neuronalen Netze (u.a. Multi Layer Perceptron (MLP), Convolutional Neural Network (CNN) zur Verarbeitung von Bilddaten und das Recurrent Neural Network (RNN) bei Text- und Zeitreihendaten)
  • praktische Übungen in Python mit den Framework Keras / Tensorflow mit high-performance GPUs
  • schrittweise die wichtigsten Aspekte für die Umsetzung mit der Deep-Learning Bibliothek Keras.
  • die Datenaufbereitung und das sequentielle Einlesen von großen Datenmengen im Training behandelt
  • die Erstellung von Netzen und die Anwendung der trainierten Modelle auf neuen Daten.
  • die Leistungsfähigkeit der Algorithmen kennenlernen und typische Probleme während des Trainings und deren Lösungsmöglichkeiten (u.a. Regularisierung während des Trainings)

Python ist im Deep Learning die am häufigsten verwendete Sprache und Keras/ Tensorflow ist eine der beliebtesten Bibliotheken zur einfachen Umsetzung von Deep Learning Algorithmen.

Wir behandeln die Anwendungsfälle

  • Vorhersage bei numerischen Daten,
  • Klassifikation von Bildern und
  • Klassifikation/Vorhersage bei Text bzw. Sequenzdaten.

Es werden die Grundlagen vermittelt, so dass Sie nach dem Seminar Deep Learning Algorithmen der Künstlichen Intelligenz programmieren können, sich selbstständig weitere Anwendungsfälle im Deep Learning aneignen und das Gelernte auf eigene Problemstellungen anwenden können.

Besonderheit dieses Deep Learning Training

Jeder Teilnehmer rechnet in der Cloud auf einer eigenen NVIDIA Tesla P100 GPU. Der Zugang erfolgt über den Webbrowser. So können typische Fragestellungen und Probleme, die in der realen, industriellen Umsetzung beim Rechnen mit GPUs auftreten, behandelt werden.

Vergleichen Sie unser Seminarangebot. Andere Deep Learning / Künstliche Intelligenz Seminare bieten gar keine oder nur low-performance GPUs für die Teilnehmer.

Damit Sie direkt nach dem Seminar mit Ihrer Deep Learning Anwendung experimentieren können und das Gelernte weiter vertiefen können, übertragen wir Ihnen das komplette Seminar-Setup kostenlos (europäischer GPU-Host, Datenspeicherung in Europa, Linux Server), wobei Sie zusätzlich noch eine Woche GPU-Rechenzeit für den Einstieg erhalten (Kostenlose Registrierung beim GPU-Host notwendig. Sie erhalten ein Startguthaben, das etwa 30 h GPU-Rechenzeit entspricht. Die genaue Zeit variiert nach aktueller Preislage des GPU-Anbieters.).

  • Jeder Teilnehmer rechnter in der Cloud auf einer NVIDIA Tesla P100 GPU, um die Neuronalen Netze im Bereich computer vision in Keras eigenständig programmieren und trainieren zu können.
  • Der Zugang erfolgt im Seminar über den Webbrowser.
  • So können typische Fragestellungen und Probleme, die in der realen, industriellen Umsetzung beim Rechnen mit GPUs auftreten, behandelt werden.

Vergleichen Sie unser Seminarangebot:

  • Andere Schulungen mit Neuronalen Netzen bieten gar keine oder nur low-performance GPUs für die Teilnehmer.
  • Nach dem Kurs übertragen wir Ihnen das komplette Seminar-Setup kostenlos
    • europäischer GPU-Host, Datenspeicherung in Europa, Linux Server),
    • mit einem Startguthaben von etwa 30h GPU-Rechenzeit.
Rezensionen auf Google
Ilias Seifie
Weiterlesen
Ich habe an einem einwöchigen Kurs über Deep Learning teilgenommen. Die Kursmaterialien sind sehr gut und vollständig ausgearbeitet. Außerdem haben das Skript und auch der Kurs insgesamt eine sehr gute Struktur. Der Tutor ist sehr engagiert …
Aylin Keskin
Weiterlesen
Super Seminar ! (...) Die Inhalte waren sehr gut gegliedert und wurden absolut verständlich vermittelt. Insgesamt hat die Kombination aus theoretischen Inhalten und praktischen Übungen ein ganzheitliches Verständnis ermöglicht ...
Marvin
Weiterlesen
Sehr gutes Verhältnis aus Information und Zeit, sehr gute persönliche Ansprache, sehr angenehmer Vortrag ohne viel Bla-Bla. Insgesamt absolut zufrieden.
Martin Schlederer
Weiterlesen
Sehr hilfreicher Kurs um die praktischen basics von Künstlicher Intelligenz und neuronalen Netzwerken zu lernen. Theorie und Praxis in schneller Abwechslung um die gelernten Konzepte umzusetzen und zu üben ...
Alicia S.
Weiterlesen
Ein toller Kurs, durchgeführt mit geballter Expertise und einer Engelsgeduld bei der Beantwortung von Fragen und Behebung von Problemen. Ich habe in diesen drei Tagen enorm viel gelernt, ...
Voriger
Nächster
Kursinhalte
Organisatorisches
FAQ
Tag 1
Tag 2
Tag 3
09:00 – 09:15
Begrüßung und Organisatorisches
  • Vorstellungsrunde
  • Erwartungen der Teilnehmer
  • Jupyter Notebook
  • Rechnen in der Cloud
09:15 – 10:45
Grundlagen von Maschinellem Lernen und Künstlicher Intelligenz (KI)
  • Kurze Einführung und Geschichte des Deep Learning
  • KI, Deep Learning und Machine Learning
  • Beispiele von Deep Learning Algorithmen in heutigen Produkten
  • Ein erstes einfaches Netz selbstständig mit Keras umsetzen und trainieren
10:45 – 11:00
Kaffeepause
11:00 – 12:30
Daten Vorbereitung
  • Overfitting beim Trainieren von Machine Learning Algorithmen
  • Train-Validation-Test Datensplit zur Detektion von Overfitting
  • Datennormalisierung
  • One-Hot encoding
  • Anwendung auf den MNIST Datensatz
12:30 – 13:30
Mittagspause
13:30 - 15:00
Multi-Layer-Perceptron (MLP) in Keras/Tensorflow (Neuronales Netz)
  • Wichtige Bauteile eines MLPs: Perceptron, Gewichte, Bias
  • Non-linearities (Aktivierungsfunktionen)
  • Softmax bei Klassifizierungsaufgaben
15:00 – 15:15
Kaffeepause
15:15 – 17:00
Ein Netzwerk trainieren und auf neue Daten anwenden
  • Verschiedene Loss-Funktionen
  • Backpropagation: Trainieren von den Gewichten
  • Initialisierung der Gewichte
  • Epoche und Batch-Size
  • Den Output während des Trainings interpretieren
  • Das trainierte Netzwerk zur Vorhersage von neuen Daten verwenden
09:00 – 09:15
Rückblick und offene Fragen von Tag 1
09:15 – 10:45
Convolutional Neural Network (CNN) – Teil I
  • Ein Convolution layer (Faltungsschicht)
  • Filter
  • Padding und Stride bei der Convolution
10:45 – 11:00
Kaffeepause
11:00 – 12:30
Convolutional Neural Network (CNN) – Teil II
  • Anzahl an Channel und Filter in der Faltung
  • Bias im CNN
  • Max-Pooling Layer
  • Was lernt ein CNN auf den unterschiedlichen Layern?
12:30 – 13:30
Mittagspause
13:30 - 15:00
Keras Callbacks
  • Einen Callback in Keras umsetzen
  • Model Gewichte und Architektur speichern
  • Early Stopping
  • Learning Rate Scheduler
  • MlFlow zur Visualisierung des Trainingsverlaufs
15:00 – 15:15
Kaffeepause
15:15 – 17:00
Klassifizierung von Bildern
  • Softmax-Layer
  • Cross-Entropy Loss
  • tf.data, um mit größeren Datensätzen zu arbeiten
  • Vorstellung bekannter Netzwerkarchitekturen: VGG-16 und AlexNet
  • Regularisierungen: L2 Regularisierung, Drop-Out, Batch Normalisation
  • Ein trainiertes Model laden
09:00 – 09:15
Rückblick und offene Fragen von Tag 2
09:15 – 10:45
Recurrent Neural Network (RNN)
  • RNN für Sequenzdaten (Zeitreihendaten)
  • GRU Netzwerke (Gated Recurrent Unit)
  • LSTM Netzwerke (Long-Short-Term Memory) Layer
10:45 – 11:00
Kaffeepause
11:00 – 12:30
Text Vorverarbeitung
  • Preprocessing von Textdaten in geeigneten Representationen (Text Vectorization)
  • Text Sentiment Analysis
12:30 – 13:30
Mittagspause
13:30 – 15:00
Weitere Aspekte eines RNNs
  • Word embeddings
  • Pretrained word embeddings: Word2Vec, GloVe
  • Stacked RNNs
  • Bidirectional recurrent layers
  • Recurrent dropout
15:00 – 15:15
Kaffeepause
15:15 – 17:00
Fine-Tuning und pretrained networks
  • Weitere bekannte Netzwerkarchitekturen: Inception-V3, ResNet,
  • Code von (bereits trainierten) Netzwerken finden
  • Vortrainierte Netzwerke für seine Aufgabe verwenden und nachtrainieren (Fine-Tuning, Transfer Learning)

Zielgruppe für diesen Kurs Künstliche Intelligenz

Diese Schulung bietet eine Einführung in Deep Learning / Künstliche Intelligenz und ist für Teilnehmer, die Neuronale Netze (Deep Learning Algorithmen) in Keras programmieren lernen möchten und einen Überblick über Möglichkeiten mit Keras zur Umsetzung von verschiedenen Neuronalen Netzwerken erhalten möchten.

Voraussetzungen für dieses Tensorflow Seminar

Gute Vorkenntnisse in einer anderen Programmiersprache oder erste Erfahrung mit Python werden für diese Künstliche Intelligenz Schulung vorausgesetzt. Erfahrung im Umgang mit Daten ist notwendig. Zusätzlich haben sich bisher diese Kenntnisse als hilfreich herausgestellt: Eine Funktion (in Python) schreiben, das Laden von Python-Bibliotheken, eine for-Schleife schreiben bzw. eine einfache Grafik mit Matplotlib zeichnen und Grundlagen in numpy.

Sehr zu empfehlen sind zudem Grundlagen im Bereich der Statistik (Median, Mittelwert, Standardabweichung, Normalverteilung), Kenntnisse mathematischer Symbole und Begriffe, wie das Summenzeichen, Integral, Funktion, Ableitung, Exponentialfunktion.

Die benutzte Programmieroberfläche im Seminar ist Jupyter Notebook, welche ohne Vorerfahrung benutzt werden kann.

Englischkenntnisse (lediglich im Verstehen von englischen Texten) sind sehr nützlich, da Python und die Internet-Dokumentationen auf Englisch sind. Daher sind auch die Folien im Kurs auf Englisch. Die Schulung selbst wird auf Deutsch gehalten.

Didaktischer Aufbau der Schulung

Dieser Künstliche Intelligenz Kurs ist sehr praxisorientiert. Die Konzepte werden in der Schulung mit Folien erläutert und an Beispielen verdeutlicht. In den Übungseinheiten der Schulung können die Teilnehmer mit der Programmiersprache Python in der Cloud mit Jupyter Notebooks das Erlernte umsetzen. Der Trainer unterstütz bei verschiedenen Aufgaben und begleitet bei Fragen.

Technik im Deep Learning Kurs

  • Die Teilnehmer benötigen für die Übungsaufgaben Laptops. Wir empfehlen, Ihren eigenen Laptop mitzubringen. Ein Laptop mit GPU wird nicht benötigt.
  • Bitte prüfen Sie, ob Ihr Firmenlaptop Zugangsbeschränkungen im Internet hat. Die digitalen Unterlagen (Skript, Code, Dateien) werden im Seminar online zum Download zur Verfügung gestellt. Sie erhalten vor dem Seminar per E-Mail den Link zu einer Testdatei zum Download, um dies überprüfen zu können.
  • Sie sollten sich in firmenfremde WLAN-Netze registrieren können. Das Programmieren und das Trainieren der Algorithmen erfolgt auf GPUs in der Cloud, welche über eine URL direkt im Browser aufgerufen wird. Sie erhalten vor dem Seminar per E-Mail einen Link, um zu testen, ob Einstellungen den Zugriff auf die Cloud beeinträchtigen.
  • Als Backup Lösung ist es möglich, dass der USB Port bei Ihrem Laptop freigeschalten ist, um damit verwendete Dateien oder sonstige Unterlagen übertragen zu können.
  • Im Seminar wird das Betriebssystem Windows verwendet. Der Umgang mit Ihrem verwendeten Betriebssystem und Laptop sollte bekannt sein. Insbesondere sollten Sie ohne Schwierigkeiten Sonderzeichen auf der Tastatur finden (insbesondere bei Apple Geräten werden auf manchen Tastaturen nicht immer runde, eckige bzw. geschweifte Klammern dargestellt).
Gibt es ein Buch, welches den Kurs ergänzt?

Für das Seminar ist folgendes Buch als Ergänzung hilfreich:

Francois Chollet: Deep Learning with Python (2nd Edition).

Grundsätzlich wird alles Wissen und Codebeispiele im Kurs so erklärt, dass es nicht nötig ist vor dem Kurs ein Buch zu lesen. Sie sollten lediglich darauf achten, dass Sie die Voraussetzungen (siehe Reiter Organisatorisches –> Voraussetzungen) erfüllen.

In welchen Städten wird das Seminar angeboten?

Wir bieten den Kurs in folgender Stadt an: Stuttgart, München, Frankfurt, Hamburg, Berlin. Falls Sie die Schulung gerne in einer anderen Stadt oder direkt bei Ihnen im Unternehmen besuchen möchten, kontaktieren Sie uns gerne.

Ich möchte gerne viel coden und hands-on Lernen. Ist das der richtige Kurs?

Definitiv. Sie werden sich im Kurs wohlfühlen. Die erste von vier Lektionen am ersten Tag schafft die Grundlagen und sie können den Editor gleich selbst ausprobieren. Ab der zweiten Lektion ist mindestens die Hälfte der Zeit zum selbstständigen Üben, so dass Sie das Besprochene direkt coden können und selbst erkennen, wo noch Fragen bestehen, die Sie mit dem Dozenten direkt besprechen können.

Welche Lernmethoden werden verwendet?

Im Seminar enthält jeder Block (meist über etwa 90 Minuten) eine oder mehrere Theorie- und Praxiseinheiten. Die Theorieeinheit dient dazu, Ihnen das nötige Wissen zu vermitteln, um die Übungsaufgaben zu verstehen und selbstständig lösen zu können. Wir verzichten auf langatmige, wissenschaftliche Theorieeinheiten und konzentrieren uns auf den theoretischen Stoff der zu einem besseren Verständnis beiträgt. Der Fokus liegt auf der Praxis, d.h. dem Codeschreiben und Lösen von kleinen Verständnisaufgaben zum Lernstoff. Fragen von Teilnehmern sind jederzeit möglich. Während der Praxiseinheit werden die Fragen individuell vom Dozenten beantwortet. Fragen von allgemeinem Interesse werden allen Teilnehmern erklärt. Die Folien, welche die Theorie und weitere Erklärungen vom Code enthalten erhalten Sie als pdf. Codebeispiele und die Musterlösung der Übungsaufgaben liegen digital vor.

Wie sehen die Übungen für die Teilnehmer aus?

Die Übungen bestehen hauptsächlich aus Coding Aufgaben, d.h. Sie schreiben entweder kurze Codebeispiele oder Sie werden gefragt, Codelücken in einem bestehenden Code zu ergänzen. Letzteres schult auch das Codeverstehen. Die Aufgaben sind so gewählt, dass die wichtigen Aufgaben von allen Teilnehmern in der verfügbaren Zeit gelöst werden können. Wir haben Coding Aufgaben unterschiedlichen Schwierigkeitsgrades vorbereitet, so dass schnellere Teilnehmer oder Teilnehmer mit Vorwissen zusätzlich an weiteren Aufgaben üben können. Desweiteren gibt es für manche Kapitel kurze Kontrollfragen zum Theorieteil.

Künstliche Intelligenz Seminar im Detail
YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Bildungsschecks
Bildungsscheck Nordrhein Westfalen
Bildungsprämie
Wir akzeptieren den Bildungsscheck NRW und die Bildungsprämie.
Warum bei Enable AI buchen
Leistungen im Kurs
Durchführungsgarantie

Die Trainer, die in exklusiver Kooperation mit Enable AI zusammen arbeiten, kommen alle aus der Praxis und vermitteln praxisnahes, aktuelles Wissen auf leicht verständliche Art und Weise mit dem Ziel, dass Sie in Ihrer Arbeit das Wissen direkt anwenden können.

Zufriedenheitsgarantie

Sollten Sie in einem mehrtägigen Seminar bis zum Ende des ersten Seminartags merken, dass dieses Seminar nicht Ihren Erwartungen entspricht, sprechen Sie bitte mit dem Kursleiter am ersten Seminartag und es wird Ihnen die volle Kursgebühr inkl. Anreise (30 cent / km bzw. Bahnfahrt 2. Klasse) erstattet. Ohne Wenn und Aber.

Wissensgarantie

Falls Ihr(e) MitarbeiterIn unerwarteterweise innerhalb eines halben Jahres nach dem Besuchen eines Kurses für mehr als 6 Monate (Krankheit, Elternzeit, Sabbatical,...) ihr Unternehmen verlässt, darf kostenlos ein Kollege innerhalb eines Jahres ab dem Verlassen des Kollegens ein stattfindendes Seminar mit demselben Inhalt besuchen.

Hands-on Schulungen

Die Kurse sind hands-on Trainings, mit vielen Coding Übungen (inkl. digitalen Musterlösungen). Denn durch praktische Beispiele lernt man am meisten.

Individuelle Schulungen

Wenn es im Interessen der Schulungsgruppe ist, ändert der Trainer das Seminar nach Ihren Wünschen ab bzw. integriert Ihre Daten nach Rücksprache in den Kurs.

Aktualisierte Schulungen

Sollten Sie eine Schulung zweimal besuchen, wird diese nicht identisch sein. Ihr Feedback wird berücksichtigt und die Schulungen werden an die aktuelle Themen in Forschung und Entwicklung angepasst.

Trainer aus der Praxis

Die Trainer, die in exklusiver Kooperation mit Enable AI zusammen arbeiten, kommen alle aus der Praxis und vermitteln praxisnahes, aktuelles Wissen auf leicht verständliche Art und Weise mit dem Ziel, dass Sie in Ihrer Arbeit das Wissen direkt anwenden können.

Kleine Gruppen

Garantierte maximale Gruppengröße von 10 Teilnehmern. Im Durchschnitt besuchen 6 Teilnehmer einen Kurs.

Fundiertes Wissen

Vor der Zusammenarbeit werden unsere Trainer geprüft. Alle besitzen fundierte Kenntnisse, u.a. durch Studium, Promotion und Berufserfahrung in den Bereichen Mathematik, Informatik, Statistik und Machine/Deep Learning.

Ihr Trainer für den Kurs

Dr. Rolf Köhler

Nach dem Studium der Mathematik und der BWL promovierte er im Cyber Valley am Max-Planck Institut in Tübingen. Sein Forschungsschwerpunkt war im Bereich Machine Learning und Bildverarbeitung.

Seit 2015 arbeitet er in der Industrie im Bereich Deep Learning und implementiert bzw. adaptiert verschiedene state-of-the-art Algorithmen für aktuelle industrielle Anwendungsfälle, darunter Autonomes Fahren und visuelle Fehlerinspektion. Aus Erweiterungen und eigenen Ideen sind mehrere Patentanmeldungen entstanden.

Seit 7 Jahren verwendet er die Programmiersprache Python für die Bildanalyse, objektorientiertem Programmieren und Deep Learning (dort vor allem die Bibliotheken Keras und TensorFlow). Er schult sein Fachwissen aus der Praxis seit über 3 Jahren.

Haben Sie noch Fragen

Jan Köhler - Gründer von Enable AI

  • Fragen zum Inhalt des Seminars?
  • Sind Sie sich unsicher, ob der Kurs Sie weder über- noch unterfordert?
  • Fragen, ob Sie das Wissen aus dem Kurs für Ihre tägliche Arbeit anwenden können?
  • weitere generelle Fragen zur Schulung?
  • einen Terminwunsch?

Rufen Sie uns an oder schreiben Sie uns eine Email

0711-96 88 15 53
[email protected]

Gerne können Sie auch direkt einen Termin mit uns vereinbaren oder eine Nachricht schreiben.


    Inhouseschulung / Firmenschulung

    Sie suchen einen Deep Learning Intensivkurs mit Beispielen aus der Bildverarbeitung und Beispielen mit sequentiellen Daten als Firmen-Weiterbildung. Der Inhalt der Schulung kann individuell angepasst werden. In Abstimmung mit dem Dozenten können Sie Schwerpunkte der Firmen-Schulung setzen, Inhalte aus der offenen Schulung streichen und weitere Inhalte hinzufügen.

    Vereinbaren Sie einen Termin für ein kostenloses Beratungsgespräch.

    Die Firmen-Trainings des Deep Learning Kurses können Live-Online oder bei Ihnen vor Ort gehalten werden. Zudem können Sie auch in München, Stuttgart, Berlin, Hannover, Köln, Hamburg, Düsseldorf, Frankfurt, Dortmund, Münster, Essen, Bonn, Dresden, Leipzig, Bremen, Duisburg, Bochum, Wuppertal, Bielefeld, Mannheim, Freiburg, Brauschweig, Kiel oder Karlsruhe stattfinden.

    Thematisch ähnliche
    Schulungen
    Auswahl ähnlicher Kurse wie der Neuronale Netze Deep Learning Kurs
    KI fuer Manager Kurs

    Grundbegriffe aus den Bereichen Künstliche Intelligenz, Maschinelles Lernen und Deep Learning. Es werden Anwendungsfälle diskutiert und die Voraussetzungen, Möglichkeiten und Grenzen von KI erläutert. Zielgruppe der Schulung sind Führungskräfte, die KI Use-Cases im Unternehmen aufdecken und das Potential und den erforderlichen Aufwand realistisch einschätzen wollen.

    Machine Learning Kurs

    Aufbauend auf Python Grundkenntnissen, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn und die wichtigsten Schritte beim Trainieren der Algorithmen behandelt. Folgende Algorithmen werden erläutert: Lineare & Logistische Regression, Entscheidungsbaum, Ensembles, Neuronales Netz (MLP), K-Nearest Neighbor, K-means, DBSCAN Clustering.

    Data Science Weiterbildung

    Sie erlernen einen umfassenden Einstieg in die Programmiersprache Python mit Fokus auf Data Science und Machine Learning. Nach dem Seminar sind sie fähig einfache Datenanalysen in Ihrem Unternehmen durchzuführen und ihre erworbende Kenntnisse selbständig zu vertiefen. U.a. folgende Python Pakete werden erläutert: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.

    Python Bilderkennung KI Deep Learning

    In diesem Kurs lernen Sie die Grundlagen von Deep-Learning (mit Beispielen aus der Bildverarbeitung) kennen. Sie erstellen und trainieren Neuronale Netze auf GPUs mit dem anwenderfreundlichen und beliebten Framework Keras / Tensorflow (in Python). Die praktischen Anwendungsfällen umfassen: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

    Natural Language Processing (NLP) Seminar

    Praxiorientierter Kurs über NLP in 2 Tagen: 1. Tag – Machine Learning Verfahren: Linguistische Vorverarbeitung, Textklassifikation bzw. Text Clustering (Python Module spacy bzw. scikit-learn). 2. Tag – Neuronale Netze: Wortvektoren, TextKlassifizikation mit LSTM, Sequenz-zu-Sequenz-Modelle (z.B. für Übersetzung), Transferlernen mit vortrainierten Modellen. (Keras/Tensorflow)

    Risikofrei Buchen

    Rücktritt bei Nichtgefallen

    Sollten Sie in einem mehrtägigen Seminar bis zum Ende des ersten Seminartags merken, dass dieses Seminar nicht Ihren Erwartungen entspricht, sprechen Sie bitte mit dem Kursleiter am ersten Seminartag und es wird Ihnen die volle Kursgebühr inkl. Anreise (30 cent / km bzw. Bahnfahrt 2. Klasse) erstattet. Ohne Wenn und Aber.

    Stornierung

    Sie können eine Bestellung kostenlos bis 14 Tage vor Beginn der Schulung stornieren.

    Bis 7 Tage vor Kursbegin fallen 50% Stornokosten zzgl. MwSt an.

    Weniger als 7 Tage vor Kursbegin ist die gesamte Seminargebühr zzgl. MwSt zu zahlen.

    Anfallende Stornokosten werden Ihnen bei Umbuchung auf einen anderen Termin oder auf ein anderes Seminar verrechnet.

    Sie können einen Ersatzteilnehmer für Ihr gebuchtes Seminar zum gebuchten Termin benennen. In diesem Falle verändern wir Ihre Buchung kostenfrei und tragen den Ersatzteilnehmer ein.

    Sie haben bei Stornierung zudem auch die Möglichkeit einen anderen Termin, an dem das Seminar bereits stattfindet (d.h. die Mindestteilnehmerzahl ist erreicht), oder ein anderes Seminar (das aufgrund der Buchungslage bereits stattfindet) kostenfrei bzw. nach Bezahlung des Differenzbetrages, teilzunehmen. Ist das gewählte Seminar preisgünstiger, erstatten wir Ihnen den Differenzbetrag nach Teilnahme am Seminar zurück. Diese Möglichkeit erfolgt aus Kulanz ohne Anerkennung einer Rechtspflicht.

    Falls die Buchungslage es ermöglicht, können wir einen Ersatzteilnehmer aus der Warteliste benennen. In diesem Fall ist Ihre Stornierung kostenfrei. Dies ist jedoch nicht garantiert und erfolgt aus Kulanz ohne Anerkennung einer Rechtspflicht.

    Schulungsort Live Online

    Für unsere Live Online Schulungen verwenden wir die Software Zoom.

    Durch die Möglichkeiten die Teilnehmer in Breakout Räumen aufzuteilen und auf die Bildschirme der einzelnen Teilnehmer zu schauen, ist es für uns möglich, Sie auch in einem Live Online Seminar individuell zu betreuen.

    Etwa eine Wochen vor Beginn der Schulung erhalten Sie von uns den Zugangslink zu Zoom per Email zugesandt.

    Schulungsraum in München

    Die Seminarräume in München befinden sich 900m von der S-Bahn Haltestelle Donnersbergerbrücke. Von dort sind es 6 min bis zum Hauptbahnhof München.

    Adresse Seminarraum München

    Regus
    Landsberger Straße 155
    80687 München

    Schulungsraum in Stuttgart

    Die Seminarräume in Stuttgart befinden sich 300m vom Hauptbahnhof, 300m von der U-Bahn Haltestelle Schloßplatz und 800m von der U-Bahn Haltestelle Charlottenplatz entfernt.

    Die hellen und geräumigen Räume befinden sich im fünften Stock eines Gebäudes mit Glasfassade.

    Im Gebäude befinden sich auch Tiefgaragenplätze. Bitte vorab die Verfügbarkeit überprüfen.

    Adresse Seminarraum Stuttgart

    Regus Königsstraße
    5. Stock
    Königstraße 10c
    70173 Stuttgart