Enable AI etabliert Künstliche Intelligenz
in Ihrem Unternehmen
Schulungen,Trainings in Machine Learning, Deep Learning, Data Science und Statistik
Auswahl der Seminare
Enable AI bietet Schulungen im Bereich Machine Learning, Deep Learning, Statistik / Data Science an.
Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen in einer anderen Programmiersprache. Vorstellung einiger der am häufigsten gebrauchten Python Bibliotheken (u.a. numpy, os, shutil) und Einführung in die Objektorientierte Programmierung in Python. Erläuterung von Code Debugging in Python. Es wird der Editor (IDE) Pycharm verwendet.
Das sagen bisherige Teilnehmer
Grundlagen (Statistik / Programmieren)
In den Grundlagen Seminaren lernen Sie die Python Programmiersprache und die wichtigsten Elemente aus der Statistik kennen.
Data Science / Machine-Learning Schulungen
In den Data Science und Machinelles Lernen Seminaren lernen Sie die sowohl die Grundlagen als auch die bekanntesten Algorithmen kennen.
Deep-Learning Schulungen
Die Deep Learning Seminare führen Sie in den noch jungen Bereich des Deep Learning ein. Sie werden das Potential, welches in Deep Learning steckt, kennenlernen.
Weitere Seminare und Termine
Die nächsten Kurse
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.
(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.
(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.
(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.
(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.
3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.
(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.
(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).