Alle Kurs Termine

Übersicht aller Termine

Ist Ihr passender Termin nicht dabei? Schreiben Sie Ihren Wunschtermin. Bei genügend Anfragen für einen bestimmten Zeitraum, kann ein weiterer Termin angeboten werden.

Category:

Ort:

April

15.04.21 – 19.04.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

April

19.04.21 – 21.04.21

09:00 – 17:00
Live-Online

Zoom Meeting

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

Mai

03.05.21 – 05.05.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

Mai

10.05.21 – 12.05.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

Juni

07.06.21 – 09.06.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

Juni

15.06.21 – 16.06.21

09:00 – 17:00
Live-Online

Zoom Meeting

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

Juni

17.06.21 – 21.06.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).

Juni

22.06.21 – 22.06.21

09:00 – 17:00
Live-Online

Zoom Meeting

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

Juli

05.07.21 – 07.07.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

Juli

12.07.21 – 14.07.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) In dieser Schulung lernen Sie, wie Sie Webapps bauen können um die Ergebnisse Ihrer Data Science / Deep Learning Algorithmen visualisieren zu können und Ihren Kollegen über ein Web Oberfläche zur Verfügung zu stellen. Verwendete Pakete und Programmiersprachen sind Python, Flask, Html / CSS, streamlit, jinja, ajax.

Juli

15.07.21 – 16.07.21

09:00 – 17:00
Live-Online

Zoom Meeting

(2 Tage) In dieser Schulung lernen Sie, wie Sie schnell und effektiv Ihre Daten und Ergebnisse mit Python visualisieren und mit anderen teilen können. Auch die interaktive Visualisierung wird behandelt. Verwendete Python Pakete sind: pandas, matplotlib, plotly, rise, ipywidgets, voila, streamlit.

Juli

15.07.21 – 16.07.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

Juli

19.07.21 – 20.07.21

09:00 – 17:00
Live-Online

Zoom Meeting

In dieser Schulung lernen Sie, wie Sie Geo-Spatial-Daten in Python analysieren und visualisieren können. Das Seminar behandelt raumbezogene Vektordaten (mit dem Python Paket geopandas) und Rasterdaten (mit dem Paket Rasterio). Das Python Modul Contextily wird verwendet um fortgeschrittene Visualisierungen zu realisieren.

Juli

19.07.21 – 21.07.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

Juli

19.07.21 – 21.07.21

09:00 – 17:00
München

Landsberger Straße 155

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

Aug

02.08.21 – 04.08.21

09:00 – 17:00
Köln

Regus Schulungszentrum

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

Sept

13.09.21 – 17.09.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(5 Tage) Einstieg in die Programmiersprache Python mit Fokus auf Data Science / Machine Learning. Mit u.a. folgenden Algorithmen: Regression, Random Forest, Clustering. Verwendete Pakete: pandas, numpy, matplotlib, seaborn, scikit-learn, statsmodels.

Sept

20.09.21 – 22.09.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).

Sept

20.09.21 – 22.09.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

Sept

23.09.21 – 23.09.21

09:00 – 17:00
Live-Online

Zoom Meeting

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

Okt

04.10.21 – 05.10.21

09:00 – 17:00
Live-Online

Zoom Meeting

(2 Tage) In dieser Schulung lernen Sie, wie Sie schnell und effektiv Ihre Daten und Ergebnisse mit Python visualisieren und mit anderen teilen können. Auch die interaktive Visualisierung wird behandelt. Verwendete Python Pakete sind: pandas, matplotlib, plotly, rise, ipywidgets, voila, streamlit.

Okt

04.10.21 – 06.10.21

09:00 – 17:00
Köln

Regus Schulungszentrum

(3 Tage) Kompakter Einstieg in Python für Datenanalyse und Data Science. Grundlagen über pandas DataFrame, Grafiken erstellen, Machine Learning und erste Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering). Verwendete Pakete: pandas, seaborn, scikit-learn.

Okt

06.10.21 – 07.10.21

09:00 – 17:00
Live-Online

Zoom Meeting

In dieser Schulung lernen Sie, wie Sie Zeitreihen Daten in Python analysieren und visualisieren können. Neben klassischen Methoden zur Zeitreihenvorhersage (ARMA) werden auch Maschinelle Lernen Methoden behandelt (RNN, LSTM). Verwendete Python Module sind: pandas, matplotlib, plotly, datetime, statsmodels, sklearn, keras.

Okt

11.10.21 – 12.10.21

09:00 – 17:00
Live-Online

Zoom Meeting

In dieser Schulung lernen Sie, wie Sie Geo-Spatial-Daten in Python analysieren und visualisieren können. Das Seminar behandelt raumbezogene Vektordaten (mit dem Python Paket geopandas) und Rasterdaten (mit dem Paket Rasterio). Das Python Modul Contextily wird verwendet um fortgeschrittene Visualisierungen zu realisieren.

Okt

20.10.21 – 22.10.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Einführung in die Programmiersprache Python für Programmierer mit Grundkenntnissen einer anderen Programmiersprache. Vorstellung häufig gebrauchter Python Bibliotheken und Einführung in die Objektorientierte Programmierung.

Nov

15.11.21 – 17.11.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Einführung in DL mit Schwerpunkt Bilddaten. Allgemeine Theorie der Neuronalen Netze und Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Use-Cases aus dem Image Processing: Bildklassifizierung, Objektdetektierung mit Bounding Boxes, Semantische Segmentierung.

Nov

17.11.21 – 19.11.21

09:00 – 17:00
Live-Online

Zoom Meeting

(3 Tage) In dieser Schulung lernen Sie, wie Sie Webapps bauen können um die Ergebnisse Ihrer Data Science / Deep Learning Algorithmen visualisieren zu können und Ihren Kollegen über ein Web Oberfläche zur Verfügung zu stellen. Verwendete Pakete und Programmiersprachen sind Python, Flask, Html / CSS, streamlit, jinja, ajax.

Nov

18.11.21 – 18.11.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(1 Tag) Einführung in Künstliche Intelligenz, Maschinelles Lernen und Deep Learning: Voraussetzungen, Möglichkeiten und Grenzen der KI. Zielgruppe sind Führungskräfte, welche das Potential von KI in ihrem Unternehmen realistisch einschätzen möchten.

Nov

23.11.21 – 24.11.21

09:00 – 17:00
München

Landsberger Straße 155

(2 Tage) Aufbauend auf Kenntnissen in Python, werden supervised und unsupervised Machine Learning Algorithmen in scikit-learn umgesetzt und die wichtigsten Schritte beim Trainieren der Algorithmen erklärt, u.a.: Regression, Entscheidungsbaum, Ensembles, Neuronales Netz, K-Means, DBSCAN Clustering.

Nov

24.11.21 – 26.11.21

09:00 – 17:00
München

Landsberger Straße 155

3 Tages Kurs (R) mit einer knappen Einführung in die Statistik. Der Fokus liegt auf der Umsetzung der intuitiv erklärten Theorie in R, um Statistiken auf Daten eigenständig berechnen zu können und Daten mit dem data.table Paket analysieren zu können.

Dez

01.12.21 – 03.12.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Grundlagen von Deep-Learning. Theorie der Neuronalen Netze und praktische Umsetzung mit Keras / Tensorflow (Python) auf high-performance GPUs. Einführung in CNNs, RNNs und LSTMs zur Bearbeitung von Bild-, Text- und Sequenzdaten. Training bei wenig Daten. Bekannte Netzwerkarchitekturen.

Dez

06.12.21 – 08.12.21

09:00 – 17:00
Stuttgart

Königsstraße 10c

(3 Tage) Einführung in die Datenanalyse und Machine Learning mit R. Wichtige Datenstrukturen in R, das Paket data.table für effiziente Datenanalyse. Statistiken berechnen. Eigene Funktionen schreiben. Plotten mit ggplot2. Erste ML-Algorithmen (Regression, Entscheidungsbaum, K-Means Clustering).